If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+7t=60
We move all terms to the left:
4.9t^2+7t-(60)=0
a = 4.9; b = 7; c = -60;
Δ = b2-4ac
Δ = 72-4·4.9·(-60)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-35}{2*4.9}=\frac{-42}{9.8} =-4+2.8/9.8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+35}{2*4.9}=\frac{28}{9.8} =2+6/7 $
| 5m-6m=-6 | | 35y+1=18y | | (3/4)x-(1/4)x+5=27 | | 3(5x+7)=-46+7 | | .60*x=360 | | 2x.4=28 | | 8x-1728x^-3=0 | | 11(x+5)=11 | | (3x3)2=9x6 | | -50=10(x+1) | | 5x+35/x=15 | | 2b+6b=~24 | | g4=4.2g= | | f(-1)=12 | | 2/5d=25 | | 2x+6=13+Y | | 13.4(3.2m+7.4)=1.85=172.3 | | 3(z-4)=16z | | 2(x-4)+x=7+3(x+1) | | 5*h=35 | | 3d+6+4d=54 | | 5/216x5+180=0 | | 3x^+3x-1260=0 | | 2(a+3)+3(2a-1)=19a= | | 21x^2+21x-20=0 | | 5(6y-3y)+3(6-5y=48 | | 8=n-3n | | (v-5)^2=2v^2-6v+4 | | X2+y2=1989 | | |5x-4|=21 | | 5−m6=19 | | 10^x=3^23 |